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ABSTRACT 

 
The poles of a recursive filter shift their position when the 
polynomial coefficients are quantized and represented with 
fixed bit width approximations. This sensitivity is quite se-
vere for high-order low-bandwidth filters. At best the root 
shift may cause significant deviation in spectral response, 
and at worst is responsible for instability in many filter de-
signs. Narrowband filters also exhibit large numerical gain 
which lead to extended bit width internal registers and ex-
tended width multipliers. We address techniques to imple-
ment high order very low-bandwidth recursive lowpass fil-
ters without the brute force requirement for extended preci-
sion coefficients and registers. 
 

1. INTRODUCTION 
 
A compact description of a recursive digital filter is the list 
of its poles and zeros, the denominator and numerator roots 
which for insight are often presented graphically as in figure 
1. An equivalent description is the denominator and numera-
tor polynomials forms by expanding the factored form as 
shown in eq-1. Without quantization, the two denominators 
of eq-1 are equivalent. With coefficient quantization, the 
coefficients (am) are replaced with approximate coefficients 
(am+Δam), which causes the roots to move from (pm) to 
(pm+Δpm). 

                  
Figure 1. Pole-Zero Diagram of 5-th Order IIR Filter 
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Traditional sensitivity analysis tells us how much change 
Δpm we expect the root pm to exhibit due to the change Δam 
of the coefficient am. Equation 2 shows the sensitivity coeffi-
cient and eq-3 reminds us the total shift is the sum of the 
shifts due to each coefficient change.   
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To first order, the m-th root moves the reciprocal of the de-
nominator of eq-2 which is seen to be the product of the dis-
tances between the m-th root and the remaining roots of the 
polynomial. Thus if we have 5 roots, and the distance from a 
selected root to each of his four companions is on the order 
of 0.1, the expected root shift is on the order of 10,000 times 
the change in the coefficient.  It is for this reason we avoid 
designs with multiple roots in the same polynomial. When 
we unpack the polynomial to form a cascade of first and sec-
ond order filters as shown in figure 3, we obtain significantly 
lower sensitivities. A sensitivity of 10 is manageable for two 
roots of a second order polynomial separated by 0.1.  
      The second implementation consideration related to the 
number of roots in a single IIR filter is the processing gain or 
bit growth between input and internal registers. Digital filters 
grow their pass band, in contrast to analog filters which at-
tenuate their stop band. This growth, called processing gain 
or numerical gain, is proportional to the ratio of sample rate 
to filter bandwidth. For FIR filters the proportionality factor 
is 1, while for IIR filters this factor is 0.37 times the band-
width ratio all raised to the number of poles in the filter. As 
an example, while a FIR filter with normalized two-sided 
bandwidth 0f 0.01 has a peak gain of 100 (40 dB), Butter-
worth IIR filters of the same bandwidth with 1-through-4 
poles exhibit gains of approximately 32 (30 dB), 1000 (60 
dB) and 32,000 (90 dB) and 1,000,000 (120 dB) respectively. 
This is illustrated in the unscaled frequency responses of 
figure 2. To accommodate these gains, the IIR filter must use 
extended precision state registers and extended precision 
multipliers. This gain must be controlled in a fixed point ma-
chine.  



    
 
Figure 2. Recursive Gain to Internal State for Butterworth 
Filters of Orders 1 through 4 for Double sided BW = 0.01 
 
       The gain of an IIR low-pass filter, shown in equation 4, 
is seen to be the inverse of the product of the distance from 
each pole in the polynomial to the Z=1 test point on the unit 
circle. 
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     To control the undesired attributes of an IIR filter, coeffi-
cient sensitivity and processing gain, we unpack the denomi-
nator polynomial and implement IIR filters as a cascade of 
first and second order sub filters with gain scaling between 
stages. This unpacking is shown in figure 3. 
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Figure 3. Unpacking A Single Stage 5-th Order Filter into a 
Cascade of First and Second Order Filters. 

We now examine the sensitivity of root locations of a second 
order polynomial to quantization of its two coefficients. In 
eq-5 we show the polynomial formed from its factored form 
with roots x ± jy. 
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Equation 6 shows us the standard representation of a second 
order polynomial.  
  
                        2

1 2( )p z z a z a= + +                                 (6) 
 
Equating corresponding terms from eq-5 and eq-6 we deter-
mine how the roots of the polynomial are related to its coef-
ficients. This relationship is shown in eq-7. 
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The relationships shown in eq-7 suggest a graphical method 
to determine the root locations directly from the coefficients 
and offers insight into the coefficient sensitivity. Referring to 
figure 4, we see that the roots lie at the intersection of the 
line x = -a1/2 and the arc of radius

2a . We can see that when 
the roots are very close, the distance -a1/2, and the radii 

2a are nearly the same size and that the arc and the line are 
almost parallel where they meet. We also know that parallel 
lines don’t meet hence the intersection of the line and arc for 
low bandwidth filters will be difficult to control when the 
coefficients a1 and a2 are quantized. This is demonstrated in 
figure 5 which identifies the possible root locations due to 
quantized line-arc intersections for 8-bit a1 and a2 coeffi-
cients. Notice the sparseness of roots in the region near Z=1, 
corresponding to low bandwidth low pass filters. 
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Figure 4. Locus of Second-Order Roots from Polynomial 
Coefficients 
 



 

 
Figure 5. Possible Roots of Second Order Polynomial with 8-
bit Quantized Real Coefficients.  
 
One approach to raising the density of pole positions near 
Z=1 is to limit filters to a cascade of first order polynomials. 
This requires the use of complex coefficients to realize com-
plex roots. The structure of the single complex pole filter, 
recognized as the normal filter, is shown in figure 6.  
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Figure 6. Locus of First-Order Roots from Complex 
 Polynomial Coefficient 
 
The root location for a first order polynomial is the negative 
of the single coefficient. This coefficient has quantized val-
ues of the real and imaginary components and the quantized 
component identifies the location of quantized roots. Since 
the real and imaginary components lie on orthogonal Carte-
sian coordinates, the quantized root grid coincides with the 
same grid. This is demonstrated in figure 7 which identifies 
the possible root locations due to quantized x and y compo-
nents for 7-bit Real and Imaginary coefficient components. 
Notice the uniformity of root distribution enable filters in the 
region corresponding to low bandwidth low pass filters. The 
penalty we pay for using the complex coefficient filter is that 
it takes 4-multiplies to form the single pole. Incidentally, the 
conjugate pole does not have to be formed in a second filter. 

 

 
Figure 7. Possible Roots of First Order Polynomial with 7-bit 
Quantized Complex Coefficient. 
 
We obtain the real output sequence as the scaled imaginary 
component, via its residue, of the single pole filter. 
  

2. IMPROVED ROOT LOCATION DENSITY 
 
It is possible to move roots into the vacant region of figure 5, 
near DC, without requiring extra bits or a different architec-
ture which would require more multiplies per sample. The 
clue of how this is done can be seen by examining figure 8. 
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Figure 8. Root in Region Accessible with bit Width and 
Square-Root of Same Root. 
 
What we see here is a root on the contour boundary of figure 
5 denoted as R exp(jθ) and its square root R  exp(jθ/2). 
From equation 8 we see the square root of the initial root is 
half the distance to the circle with half the angle from the x-
axis. To first order, the square root operator forms a root half 
way to the Z=1 point. We note a second square root would 
generate image roots half way again to the Z=1 point. 
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Figure 9 illustrates the root images under the square root 
operation and figure 10 shows the root images under the 4-th 
root operation. Compare these figures to figure 5 and note 
the migration of the roots onto the Z=1 neighborhood. 

 

 
Figure 9. Root Locations from (Roots) 1/2 of Second Order 
Polynomial with 8-bit Quantized Real Coefficients.  

 

 
Figure 10. Root Locations from (Roots)1/4 of Second Order 
Polynomial with 8-bit Quantized Real Coefficients. 
 
We now know that the m-th root of the roots formed by a 
second order polynomial will give us access to roots near 
Z=1. The question then is; how do we form these roots? We 
accomplish this by zero-packing the impulse response of the 
prototype filter. This is akin to the zero-packing we associate 
with the iterated FIR (IFIR) filter process. The zero packing 
is implemented trivially by forming polynomials in ZM, that 
is, replace each delay in the IIR filter with M delays. We 
know for instance that if we zero pack a time sequence for a 
filter 1–to-4 we obtain 4-replica spectra when traversing the 
unit circle.  Similarly, a 1-to-M zero packing will result in 
M-fold replication of the prototype spectra. The M-fold spec-
tral replication means there is an M-fold bandwidth reduction 

so, in anticipation, we design the prototype for M-times the 
desired bandwidth. The filter of course has an M-fold replica 
of the desired spectral response. A simple cascade of boxcar 
integrators (or CIC’s) will suppress the undesired replicas. 
 

3. EXAMPLE 
 
      As a specific example let us examine a 5-th order elliptic 
filter with two sided bandwidth 0.01 implemented with 12-
bit coefficients. We used the standard MATLAB elliptic fil-
ter design call to obtain a scaled coefficient set. The roots of 
the prototype and its time and spectral response are shown in 
figures 11 and 12 respectively. We first examine the roots of 
the prototype filter. 
 

 
Figure 11. Roots of Prototype Filter with Floating Point coef-
ficients, with 12-Bit Coefficients, and the 4-Times BW Filter 
with 12-Bit Coefficients and the 1-to-4 Zero Packed Filter  
 

 
Figure 12. Impulse and Frequency Response of Prototype 
Filter with Floating Point coefficients and with 12-Bit Coef-
ficients, and then of 4-Times BW 1-to-4 Zero-Packed Filter 
with 12-Bit Coefficients and Cascade CIC Filter  



The left subplot in figure 11 presents the prototype roots and 
the center subplot presents the shifted roots due to the 12-bit 
representation of the filter. We note that the complex root 
pairs of the filter have shifted. The effect of this shift is seen 
in the time domain and in frequency domain shown in figure 
12. The shifted poles have caused a 3-dB resonance peak at 
the band edge which is seen as a decreased damping factor 
damped sinusoid impulse response. The right subplot of fig-
ure 11 shows the pole positions of the 4-times bandwidth 
filter as well as the shifted positions due to operating in the 
1-to-4 zero packed mode. Also shown on this plot is the 
nominal pole-zero positions prior to the quantization. The 
pole and zero shifts due to quantization are seen to be sig-
nificantly smaller for this operation mode.  
      A comparison of the filter spectra for the prototype filter 
and for the zero packed filter is seen in figure 13. Here we 
see that the spectra in the neighborhood of the pass-band are 
essentially indistinguishable. The effect of the additional 
processing to suppress the spectral replicates is also seen 
here.    

 
Figure 13. Spectrum of Prototype Filter, of the 4-Times BW 
Filter 1-to-4 Zero Packed, and the CIC-Filtered Composite 
Spectrum 
 

4. REVIEW AND CONCLUSIONS 
 
We have reviewed the source of difficulty we encounter 
when operating a recursive filter at very high ratios of sample 
rate to bandwidth. These are primarily related to the affects 
of finite arithmetic on sensitivity of pole positions to coeffi-
cient quantization. This sensitivity is compounded by the 
presence of multiple roots in the same filter structure. Good 
design practices have us decouple roots by placing them in 
different polynomials implemented in distinct subfilters. Due 
to similar considerations, the numerical gain of a filter is 
proportional to the ratio of sample rate to filter bandwidth. 
This gain had to be scaled out of the filter and good design 
strategies dictate that the scaling be distributed over multiple 
small filters to avoid having to deal with very wide words in 
the processing stream.  

We then reviewed the finite arithmetic effects of the viable 
building blocks of recursive filters, first and second order 
sub-filters. We reminded the reader that the interaction be-
tween the two coefficients of a second order polynomial 
leads to an ill conditioned coupling when the recursive filter 
is designed for low bandwidth near zero frequency. The con-
ditioning is worse for closely spaced poles, as required for 
low bandwidth filters near DC, and the conditioning is best 
for widely spaced poles, as encountered for filters centered at 
the quarter sample rate. The traditional method of accessing 
pole positions near DC is to raise the number of bits repre-
senting the filter coefficients. Alternatively we try to avoid 
the bad operating condition by good design practice and elect 
not to implement high Q digital filters. The modern approach 
to this avoidance involves reducing the sample rate by multi-
rate signal processing techniques, conducting the desired 
filtering task at a reduced sample rate, and finally returning 
the sample rate to its original by a second multirate filter. 
     In the event the filter must be designed to operate with 
large ratios of sample rate to bandwidth we offer an option 
besides brute force to access pole positions in the normally 
vacant neighborhood about the Z=1 point. The process in-
volves zero packing a recursive filter in a manor similar to 
the iterated designs used in FIR filter implementations. In the 
FIR filter case the intent of zero packing is to reduce the 
number of computations. It the IIR case, the intent of zero 
packing is to reduce the bit width required in the recursion. 
The M-th roots of the nominal pole positions accessible to 
second order polynomials enlarges the available region of 
accessible roots.  
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